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SUMMARY

Problem

A variety of methods have been used to develop algorithms

for medical diagnosis. Two methods that have been used recently

are multiple regression and neural networks. The current study

is a systematic comparison of these two methods using simulated

data.

Approach

Data sets were developed using four variables which were

combined in three ways. One combination was a linear function,

the second was a polynomial function, and the third function

included an interactive term. For each function, a small data

set of 100 cases, and a large data set of 1,000 cases was

generated.

The methods were evaluated by developing predictive

algorithms using a regression program and a neural network

program. Validation correlation coefficients were produced by

correlating the predicted score from each method with true scores

on the data set used to develop the algorithm. The predictive

algorithm was also applied to another data set and these values

were correlated with the true scores to generate cross-validation

correlations.

Results

Results of the analyses for the data combined using a linear

function reveal virtually no difference between the regression

and neural network methods for large samples. On the small data

sets the neural network algorithms tended to overfit on the

2



validation samples and displayed a relatively large degree of

shrinkage upon cross validation.

Analysis of the data sets containing a polynomial term or an

interactive term showed that the neural network technique could

fit the non-linear variance without any specification being

provided. The regression program required the form of the non-

linear term to be specified before the regression technique would

fit it. These analyses also showed that the neural network had a

greater tendency than the regression program to overfit when

provided small data sets, and as a result, the regression

equation generalized better on such data.

Conclusions

It was concluded that neural networks could be useful when

developing diagnostic algorithms by locating non-linear effects.

However, such analyses would require data sets sufficiently large

to avoid fitting sample-specific variance. In this regard it is

recommended that a cross-validation procedure be used and the

degree of shrinkage between the validation and cross-validation

samples be examined. A large degree of shrinkage would indicate

the algorithm would not generalize to other samples. Finally, it

was suggested that in the event that a non-linear relationship is

found, the investigator should attempt to specify the form of the

relationship and use that information to build a regression

equation.
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PREDICTING A MEDICAL DIAGNOSIS

William M. Pugh and David H. Ryman

The increased availability of computer technology has been

paralleled by a series of efforts to apply analytical methods to

medical decision making. Early work (Ledley and Lusted, 1959)

involved the application of Bayes Theorem to the task of deriving

the probability of a medical diagnosis. Subsequent investigators

have applied a variety of techniques including multiple

regression, linear discriminant analysis (Titterington, Murray,

G. D., Murray, L. S., Spiegelhalter, D. J., 1981), and expert

systems (Kinney, Brafman, Wright, 1988).

Navy researchers have been particularly interested in these

developments because of the potential application to small U.S.

Navy ships and submarines. The medical department on these

vessels is typically run by a specially trained independent euty

hospital corpsman. If one of these corpsmen is confronted with a

patient suffering from an acute illness that is difficult to

diagnose, the ship may have to abort its mission so that medical

consultation and support can be obtained. Therefore, work was

begun on the development of diagnostic algorithms to provide

support for corpsmen at sea (Stetson, Eberhart, Dobbins, Pugh,

Gino, 1990).
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The initial algorithms developed for Navy personnel used

either a rule-based approach (Newacheck, 1990) or a bayesian

approach (de Dombal, Leaper, Staniland, McCann & Horrocks, 1972;

Carras, Southerland, Fisherkeller, 1989). More recently the

utility of using neural network technology for medical diagnosis

has been investigated (Eberhart & Dobbins, 1989). The current

study was undertaken to better understand the strengths and

weaknesses of the neural network approach by comparing that

approach to the more established analytic technique of multiple

regression. This comparison was accomplished using a computer

simulation in which randomly generated signs and symptoms were

combined according to three different models to create the

diagnostic outcome. Applying the neural network and multiple

regression procedures to these data with known characteristics

allowed the two techniques to be compared in a systematic

fashion.

Method

Techniques

The regression analyses were conducted with the SPSSX

multiple regression program. The neural network used was the

Batchnet program developed by the Eberhart and Dobbins (1990).

The Batchnet program is a feedback learning routine with options

that allows the user to specify the number of hidden layers, the
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number of hidden nodes, learning rate, and activation function.

All data points, however, must range between 0 and 1.

Data

Predictor variables. Thirty data sets of 100 simulated

patients and 10 data sets of 1000 simulated cases were generated.

Four predictor variables, i.e., data representing medical signs

and symptoms, were created using the SPSSX random number

generator. Although many symptoms are normally distributed

otheri are not. To address this issue while attempting to limit

the complexity of the simulation it was decided that two common

distributions would be used in generating the predictor

variables. Therefore, the first two variables, X, and X2, were

created as normally distributed variables with a mean of 0.5 and

a standard deviation of 0.3. The second two variables, X3 and

X4, were uniformly distributed between 0 and 1.

Outcome variables. Three different outcome or criterion

scores were created to reflect different ways that signs and

symptoms could be related to a medical diagnosis. In each

situation, three separate effects are combined to produce the

outcome measure. The first type of relationship is one where the

three conditions contributed equally to the outcome, and each

additional increase in a predictor measure produces a

commensurate increase in the manifestation of the medical

disorder. For example, fever, abdominal pain, and nausea may all
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lead to a diagnosis of appendicitis. Further, if an increase in

any or all of these may indicate a greater manifestation of the

disorder, the situation may be modeled as follows:

SX1 +X2 +X3 +VIE
3 +f

This function will be referred to as the linear function.

An error term (E) was added to the signs and symptoms (Xj,

X2 and X3 ) to represent the uncontrolled variables and errors of

measurement that prevent one from being certain about every

diagnosis. E was created as a normally distributed random

variable with a mean of 0.5 and a standard deviation of 0.3. The

result was weighted by the square root of two so that it would

account for 40 percent of the variance in the outcome Y,. Such

an amount of error seemed to be a plausable estimate of the

variance resulting from errors of measurement and unmeasured

symptoms or causal factors. But, more importantly it was felt

that this would test the ability of the two techniques to

separate the signal (predictable variance) from the noise

(error). Dividing by 3+vf2 simply brought the Y, values into 0 to

1 range required for Batchnet.

The second type of relationship that was examined both

represented a situation where both a low and a high value on a

predictor variable was indicative of the diagnosis. For example,

loss of consciousness, low-blood pressure, and either too little
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or too much insulin, could be indicative of diabetic shock. The

effect of insulin, in this case, can be represented by a second

degree polynomial S which is a function of X3.

To keep S within the range 0 to 1, S was created as follows:

s=4(x3-.,5)
2

Then, the above situation was modeled as follows:

X2 = +X2 + s+vJE

This function will be called the polynomial function.

The third type of relationship considered is one where two

variables interact. An example of this type of relationship

would be seen with the diagnosis of heart disease. In addition

to risk factors such as excessive weight and hypertension,

factors such as diet and cholesterol levels could be interactive.

For instance, a fatty diet and low cholesterol levels could

indicate a patient has the ability to metabolize cholesterol very

well while a low fat high fiber diet with high cholesterol levels

may suggest a genetic propensity toward high cholesterol levels.
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This relationship of diet and cholesterol level can be

xpressed as (I) the product of the measures (X3 and X4 ). To

eep I within the range of 0 to 1, I was created as follows:

1=2(X3 -. 5)(X 4-. 5)

The above relationship was, then, modeled as follows:

X3 + X +I+V'E

33V

nd will be called the interactive function.

esign

Analyses were conducted on thirty data sets of 100 cases,

nd ten data sets of 1000 cases. Information from each data set

as entered into the multiple regression and the neural network

rograms. The predictor variables were organized into two sets,

ne containing only the linear variables X1 , X2 , X3 , and X4 , and

he second set consisted of these linear variable plus the two

on-linear terms S and I. Each predictor set was used to develop

he prediction parameters employed by the respective analytic

echniques for each of the outcome variables (Y1, Y2, and Y3 )-

hus, for each data set 12 predictions were made: an algorithm

9



as derived from each of the two predictor sets, for each of the

hree outcome variables, from each of the two techniques.

rocedures

A series of pilot analyses conducted prior to this study

ndicated that for data sets such as the ones used in the current

nalyses, the neural network performed best when one hidden layer

ith 5 nodes and a learning rate of 0.15 was used. There these

arameters were used along with a sigmoid activation function,

.e.,

l+e-x

nce an analysis was run on a data set, the parameters produced

ere applied to that data set to yield a predicted value for each
utcome variable (i.e., ',, , Y3)- The accuracy of these

redictions was evaluated by correlating them with the actual y

alues. These correlations (rP) computed on the data set used

o derive the prediction parameters are referred to as the

alidation correlations.

To assess the degree that these prediction methods would

eneralize, the parameters from each data set were applied to the

redictor variables of the next data set. For instance, the

arameters of data set one were applied to the predictor
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iriables in data set two, producing predicted y values for data

't two. Parameters from the last data set were applied to the

.rst one. These ^ values generated using parameters derived on

iother data set were correlated with the actual y values to

oduce a set of correlations referred to as the cross-validation

irrelations.

Results

Inspection of the predictor data showed that each of the

edictor terms had approximately the same standard deviation

:cept for I, which had a standard deviation approximately half

Le size of the others. This result can be used to compute the

,rrelations that would be obtain with an optimal predictor

.e., a predictor of everything but the error term). This is

,ne by letting the standard deviation for each predictor term be

except for the standard deviation of I which would be 1/2 D.

so, the standard deviation of E would be equal to D. Because

1 the terms were independently generated, the covariances can

assumed to be zero, and the total variance for any function

n be found by summing the component variances. Thus, the

riance contained in the linear function ( Y, ) can be found by

mming the variance of X1 , X2 , and X3 , and then adding the error

riance as follows:

3D 2 4.4D) 2=5D 2
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Subtracting the amount of error variance from the total

leaves the amount of predictable variance; 3D2 . The ratio of the

predictable to total variance is the correlation ratio:

CR= 3D2

5D
2

and the square root of the correlation ratio yields the

correlation (r - .77) that would be obtained with the optimal

predictor. In a similar fashion, correlation ratios can be

computed for the polynomial and interactive functions. In

addition, the numerator can be decomposed into the linear and

non-linear components. Table 1 shows the results of carrying out

these computations. The first column of values are the

validation correlations that would be expected if the linear

variance was correctly predicted, and the second column are the

validation correlations that would be expected if all predictable

variance (both linear and non-linear) was accounted for.

Table 1

Expected Correlations for Optimal Prediction Parameters

Correlation
Linear Predictable

Function Variance Variance

Linear .77 .77
Polynomial .63 .77
Interactive .69 .73
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Linear Function

The results of data analyses conducted with respect to the

linear function are shown in Table 2.

Table 2

Mean Correlations Between Actual and Predicted
Criterion Scores Generated Using a

Linear Function

PREDICTOR SET

NO. CASES TECHNIQUE LINEAR TERMS ONLY LINEAR & NON-LINEAR

CROSS- CROSS-
VALIDATION VALIDATION VALIDATION VALIDATION

100 REGRESSION .77 (.04) .76 (.04) .77 (.03) .74 (.04)
NEURAL NET .81 (.04) .68 (.05) .81 (.05) .66 (.07)

1000 REGRESSION .78 (.01) .78 (.01) .78 (.01) .78 (.01)
NEURAL NET .77 (.01) .76 (.01) .77 (.01) .77 (.01)

For each condition, the mean correlation is displayed followed by

the standard deviation in parentheses. The predictor set used,

made virtually no difference for these data. This result was

expected because the additional non-linear terms should not be

useful when predicting a linear function. The validation

correlations in Table 2 tend to be near the 0.77 listed in Table

1 except for the value of 0.81 for neural networks on data sets

of 100 cases. It should be noticed, however, that this

prediction showed considerable shrinkage upon cross-validation.

Finally, it can be seen that the regression based prediction

consistently cross-validated better than the neural network

predictions. Although, the neural network predictions
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generalized better on data sets with 1000 cases than neural

networks using 100 cases, the regression equation was

statistically better than neural networks, on data sets of 1000

cases, both when linear predictors were used (t - 8.82, p < .001;

df - 9) and when all predictors were used (t = 4.80, p < .001; df

- 9).

Polynomial Function

The results of the analyses conducted to predict the outcome

containing the second order polynomial are shown in Table 3. The

correlations obtained with the linear predictors on data sets

with 1000 cases shows that the regression technique had a

validation correlation of 0.63 and the corresponding value for

the neural network was 0.77. Comparing these numbers to the

values in Table 1, it would appear that the regression equation

is predicting the linear variance while the neural network is

capturing both the linear and non-linear variance. Further, upon

cross-validation, there was virtually no shrinkage for either

prediction. On data sets with 100 cases, it appears that the

regression equation slightly overfit the linear component while

the neural network tended to overfit the data to a much greater

extent. The extent of overfitting appears to have been reflected

in the amount of shrinkage that occurred upon cross-validation.

For the regression equation, the 0.65 fell to 0.62, while the

0.82 for the neural network fell to 0.68.
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Table 3

Mean Correlation Between Actual and Predicted
Criterion Scores Generated Using a Function

with a Second Order Polynomial

PREDICTOR SET

NO. CASES TECHNIQUE LINEAR TERMS ONLY LINEAR & NON-LINEAR

CROSS- CROSS-
VALIDATION VALIDATION VALIDATION VALIDATION

100 REGRESSION .65 (.05) .62 (.04) .76 (.05) .74 (.05)
NEURAL NET .82 (.04) .68 (.06) .82 (.05) .67 (.07)

1000 REGRESSION .63 (.02) .63 (.02) .78 (.01) .77 (.01)
NEURAL NET .77 (.01) .76 (.01) .77 (.01) .76 (.01)

When the non-linear terms were added to the predictor set,

the correlations for the regression technique increased

noticeably, while the neural network correlations remained

virtually unchanged. Again this would suggest that the neural

network was able to predict the non-linear variance without the

additional terms, and when added, the non-linear terms were of no

benefit to the network. Although, regression could not predict

the interactive variance without the non-linear terms, when

provided the non-linear information the regression technique was

able to meet or exceed the performance of the neural network.

When using data sets with 100 cases, the difference between 0.74

and 0.67 was statistically significant (t - 6.13, p < .001; df -

29) and under the 1000 case condition the difference was smaller,

0.77 versus 0.76, but still statistically significant (t - 3.19

p < .05; df - 9).
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Interactive Function

The information from the analyses of the data sets with

respect to the interactive function is shown in Table 4. As seen

for the previous function, the validation correlations obtained

on the 1000 case data sets are comparable to the values in Table

1. Again, it appears that given linear prediction terms, the

regression fits only the linear variance while the neural network

fits both the linear and non-linear. Further, when the non-

linear terms are added to the predictor set, the regression

solution performs well. In fact, cross-validation correlations

of equations using linear and non-linear terms are better for the

regression techniques than the neural network for both the 100

case data sets (t - 7.26, p < .001; df - 29) and 1000 case data

sets (t - 5.47, p < .001; df - 9). Finally, it has been observed

that for all three functions, the neural network tended to

overfit the data sets with 100 cases and then suffer a

considerable amount of shrinkage upon cross-validation.
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Table 4

Mean Correlation Between Actual and Predicted
Criterion Scores Generated Using a Function

with an Interactive Component

PREDICTOR SET

NO. CASES TECHNIQUE LINEAR TERMS ONLY LINEAR & NON-LINEAR

CROSS- CROSS-
VALIDATION VALIDATION VALIDATION VALIDATION

100 REGRESSION .69 (.05) .66 (.05) .72 (.05) .71 (.05)
NEURAL NET .78 (.05) .60 (.07) .78 (.08) .60 (.10)

1000 REGRESSION .68 (.02) .68 (.02) .73 (.01) .73 (.01)
NEURAL NET .72 (.01) .71 (.02) .72 (.01) .72 (.02)

Discussion

Analyses using only the linear predictors showed that the

regression procedure was able to predict the linear component of

the outcome variable while the neural network was able to fit

both the linear and non-linear variance. So, when all the

component predictors were related to the outcome in a linear

fashion the neural network had no advantage over the regression.

The advantage of using a neural network, it would seem, is that

it will fit virtually any form of function that the predictors

have with the criterion; the investigator does not have to model

the relationship first.

This advantage, however, may be more apparent than real.

First, the linear regression was able to predict the non-linear

variable once the appropriate predictor transformations were made
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and entered into the analysis. Therefore, regression can fit the

same variance the neural network accounted for, but the

investigator must provide information on the form of the

relationship to the analytic technique. At this point, it should

be noted that neural network must also be "tuned". The user must

specify the number of layers to be used, the number of nodes at

the hidden layers, the learning rate, and the activation

function. It can be argued such "tuning" is the neural

networkers way of providing information on the form of the

relationship to the program.

To be able to predict the non-linear variance, the neural

network is, in effect, generating an array of non-linear terms

transparent to the user and entering those into the analysis.

While this process can help if there is, in fact, a non-linear

component to predict, it can also work against the user. In

particular, if a large number of terms are being tested, then a

large number of cases are needed to develop stable weight. Thus,

when the number of cases is too small, the extra terms supplied

by the neural network will fit erroneous variance. These errors

will then work against the effort to predict the outcome in new

data samples. As we saw, the neural network consistently overfit

the data upon validation in the data sets with only 100 cases,

and as a result, produced sub-optimal predictions upon cross-

validation. Data sets with 1000 cases, however, provided enough

information for the neural network to generate stable results.
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For the researcher who is interested in developing

diagnostic algorithms, these results provide some important

guidance. First, one should be aware the predictor information

may not have a linear relationship to the outcome being studied.

To explore this possibility, one could use a neural network or

multiple regression with non-linear terms included.

If the neural network is used, one should strive to use a

large data set to develop the prediction parameters. It is also

recommended that a cross-validation sample be used to test the

result. A large degree of shrinkage between the validation and

cross-validation predictions would suggest that the size of the

validation sample was too small and the predictions could be

improved.

If the number of cases for analysis is small, the investigat

or should consider using regression, and if regression is used,

the number of predictor terms used should be monitored. It is

recommended that medical expertise be brought to bear before any

analyses are conducted. This way any potential terms, linear and

non-linear, can be identified and meaningful transformations can

be generated. Again, it is recommended that parameters be

developed on a validation sample and tested on a cross-validation

sample. The prior modeling, however, should guard against a high

degree of shrinkage in the predictive validities. In addition,
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review of the regression weights will show which terms

significantly predict the outcome.

This feature of regression programs; to identify those terms

that are used to predict the criterion, is an important one which

should be considered even if a neural network has successfully

predicted an outcome. That is, the researcher may wish to use a

hybrid approach where a neural network and a regression analysis

are both conducted. If it appears that the neural network is

accounting for more criterion variance, various transformations

of the predictors could be tested. This way one could determine

which variables are contributing to the prediction and the form

of the predictive function would be known, while the accuracy of

prediction would be maintained. Such information could be used

to simplify predictive algorithms and contribute to knowledge

about how specific diagnoses are made.

These analyses and results do not identify which technique

is better, and that was not the intent of this exercise. Instead

the relative strengths and weaknesses were demonstrated and

discussed. The course of action that is taken by a researcher

should include a consideration of the amount of data available

for analysis, knowledge about the relationship between symptoms

and diagnoses of interest, and the need to know how a specific

diagnosis was achieved.
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